BABCOCK UNIVERSITY

CENTRE FOR OPEN DISTANCE AND ELEARNING (BUCODeL)

Babcock University Centre for Open Distance and e-Learning (BUCODeL)

AUTHENTIC ASSESSMENT

COURSE CODE: BSAD 112
COURSE TITTLE: BUSINESS MATHEMATICS II
AUTHENTIC ASSESSMENT(AA) DEVELOPMENT TEAM:
SUBJECT EXPERT(S):Dr. Esther LawalMrs. Julia Izang
AA CONSULTANT:Prof. Mobolanle E. SotunsaCONTENT REVIEWER(S): Prof. Adekunle Binuyo
Dr. Olusola Maitanmi
Mr. Emeka Akpa
Mr. Damilare Akinwunmi
Mr. Odunayo Aluko
LANGUAGE EDITOR(S):Prof. Mobolanle E. SotunsaDr. Abiola Kalejaiye
CREATIVE DESIGN TEAM: Dr. Olurotimi AweMr. Damilare Akinwunmi
Mr. Theophilus Afolabi

TOPIC: FUNCTIONS OF REAL VARIABLES

LEARNING OUTCOMES:

At the end of this topic, learners are expected to:

1. Recognize real numbers
2. Analyze various types of functions.
3. Solve problems relating to composite functions
4. Substitute for each function to obtain total score.

Assessment Description (Task) (6 marks)
Suppose the cost of manufacturing q units of a certain commodity is given as a function $C(q)=q^{3}-30 q^{2}+500 q+200$.
What is the cost of manufacturing 10 units of commodity? (6marks)

GRADING RUBRICS

	REALISTIC OBJECTIVES	POOR	EXCELLENT
1.	Identify the value for q	Not identifying the values for q $\mathbf{0}$ mark	Proper identification of the value for q
2.	Substitute correctly the values of q	Not substituting the correct values of q	Substitute correctly the values of q
3.	Put the powers into consideration in the function	The powers are not properly put into	The powers are put into consideration in the cost function

		consideration in the cost function	
$\mathbf{0}$ mark	$\mathbf{2}$ marks		
4.	Final answer for the task	Incorrect final answer to the task $\mathbf{0}$ mark	Correct final answer to the task

TOPIC: LIMITS OF A FUNCTION

LEARNING OUTCOMES:

At the end of this topic, you are expected to:

1. Define the limit of a function
2. Resolve related problems using the factorization.
3. Solve limit of a function using L'hopital's method.

Assessment Description (Task) (12 marks)
Prove that this function is defined using both factorization and L'hopital's method:
$\mathrm{g}(\mathrm{x})=x 2-4 x-2$,
$\mathrm{x} \rightarrow 2$

GRADING RUBRICS

	REALISTIC OBJECTIVES	POOR	EXCELLENT
1.	Identify the value for x	Not properly identifying the value for x	Identify the value for x
2.	State the formula for the L'hopital's method correctly	Incorrectly stating the formula for the L'hopital's method	State the formula for the L'hopital's method correctly $\mathbf{0}$ marks

3.	Substitute the values of the limit function correctly	Incorrectly substituting the values of the limit function $\mathbf{0}$ mark	Correctly substituting the values of the limit function $\mathbf{4}$ marks
4.	Final answer for the task	Not stating the correct final answer	Correct final answer for the task

TOPIC: DIFFERENTIATION

LEARNING OUTCOMES:

At end of this topic, you should be able to:

1. Use these rules in solving different differentiation problems:
a. Constant Function Rule
b. Linear Function Rule
c. Power Function Rule
d. Rules for Sums and Differences
e. Higher Order Derivatives
f. Product Rule
g. Quotient Rule
h. Chain Rule
2. Differentiate by using First Principles

Assessment Description (Task) (15 marks)
Let $c(x)=1 / 8 x^{2}+3 x+98$ be the total cost function for the commodity.

- Find the average cost and marginal average cost for the commodity.
- From what level of production is Marginal Average Cost $(\mathrm{MAC})=0$
- From what level of production does Marginal Cost (MC) = Average Cost (AC)

GRADING RUBRICS

	REALISTIC OBJECTIVES	POOR	EXCELLENT
1.	Differentiate the function using applicable	Differentiate	Differentiate the
rules of differentiation	the function	function using	
without using	applicable rules of		
		applicable rules of differentiation	
		differentiation	

		0 mark	2 marks
2.	Give the formula for the average cost	State the wrong formula for the average cost 0 mark	States the right formula for the average cost 1 mark
3.	Solve for average cost	Does not solve for average cost 0 mark	Solve for average cost 3 marks
4.	State the formula for marginal cost	Does not state the appropriate formula for marginal cost 0 mark	States the appropriate formula for marginal cost 1 mark
5.	Solve for marginal cost by substituting appropriate values	Does not solve for marginal cost by substituting appropriate vales 0 marks	Solve for marginal cost by substituting appropriate values 2 marks
6.	Solve for marginal average cost to obtain the level of production	Solve for any other function than marginal average cost function 0 marks	Solve for marginal average cost to obtain the level of production 3 marks

7.Equate the values of marginal cost to average cost to obtain the maximum production level of the stated cost function	Solution that does not include equating the values of marginal cost to average cost to obtain	Equate the values of marginal cost to average cost to obtain the maximum production level of the stated cost function the maximum production	$\mathbf{3}$ marks
level of the			
stated cost			
function			
$\mathbf{0}$ mark			

TOPIC: INCREASING AND DECREASING FUNCTIONS

LEARNING OUTCOMES:

At the end of this topic, you should be able to:

- Interpret increasing and decreasing function
- Solve application problems relating to increasing and decreasing functions

Assessment Description (Task) (10 marks)

Given $Y=4 x^{2}-10 x+100$. Determine whether the function is increasing at $\mathrm{x}=10$ or $\mathrm{x}=5$

GRADING RUBRIC

	Criteria	Poor	Excellent
$\mathbf{1}$	Differentiating the function with respect to x	Not differentiating the function with respect to x	Differentiating the function appropriately with respect to x
$\mathbf{2}$	Substituting $\mathrm{x}=10$ and $\mathrm{x}=5$		
into	Not properly substituting the values of x into the differentiated equation, thus arriving at the wrong solution to the problem. 0 mark	mark differentiated equation and solving the	
equation to arrive			
at a solution.			
$\mathbf{4}$ marks			

3	Identifying if the function is increasing or decreasing at the point where $\mathrm{x}=10$ and $\mathrm{x}=5$	Not recognizing if the function is increasing or decreasing where $\mathrm{x}=10$ and $\mathrm{x}=5$ mark	Appropriately Identifying if the function is increasing or decreasing at the point where $\mathrm{x}=10$ and $\mathrm{x}=5$ 2 marks

TOPIC: EXTREME VALUES

LEARNING OUTCOMES:

At the end of this topic, you should be able to:

1. Determine extreme values
2. Solve application problems relating to extreme values

Assessment Description (Task) (15 marks)
The demand equation for Dangote spaghetti is given as $\mathrm{P}=2 x-0.001 x^{2}$. Find the value of x and the corresponding price that maximizes the revenue

GRADING RUBRIC

	Criteria	(Poor)	(Excellent)
$\mathbf{1}$	Using the price equation to derive a revenue function	Not accurately deriving the revenue function from the price equation	Accurately using the price equation to arrive at a revenue function
$\mathbf{2}$	Properly differentiate the derived revenue function.	Inaccurate differentiation of the derived revenue function. 0 mark	differentiate the derived revenue equation. $\mathbf{4}$ marks
$\mathbf{3}$	Solve the differentiated revenue	Not solving the	Solving the differentiated

function when equated to zero to get x	differentiated revenue function when equated to zero to get x	revenue function when zero to get x	
$\mathbf{4}$	Using the value of x to arrive at the maximum price and maximum revenue	Solving for a different value for the maximum price and maximum revenue apart from the value in the third step.	arrive at the maximum price and maximum revenue 3 marks

Total score: 15 marks

