

Babcock University Centre for Open Distance and e-Learning (BUCODeL)

AUTHENTIC ASSESSMENT

BSAD 112: BUSINESS MATHEMATICS II

COURSE CODE:	BSAD 112			
COURSE TITLE:	BUSINESS MATHEMATICS II			
AUTHENTIC ASSESSMENT(AA) DEVELOPMENT TEAM:				
SUBJECT EXPERT(S):	Dr. Esther Lawal			
	Mrs. Julia Izang			
AA CONSULTANT:	Prof. Mobolanle E. Sotunsa			
CONTENT REVIEWER(S):	Prof. Adekunle Binuyo			
	Dr. Olusola Maitanmi			
	Mr. Emeka Akpa			
	Mr. Damilare Akinwunmi			
	Mr. Odunayo Aluko			
LANGUAGE EDITOR(S):	Prof. Mobolanle E. Sotunsa			
· · ·	Dr. Abiola Kalejaiye			
CREATIVE DESIGN TEAM:	Dr. Olurotimi Awe			
	Mr. Damilare Akinwunmi			
	Mr. Theophilus Afolabi			

TOPIC: FUNCTIONS OF REAL VARIABLES

LEARNING OUTCOMES:

At the end of this topic, learners are expected to:

- 1. Recognize real numbers
- 2. Analyze various types of functions.
- 3. Solve problems relating to composite functions
- 4. Substitute for each function to obtain total score.

Assessment Description (Task) (6 marks)

Suppose the cost of manufacturing q units of a certain commodity is given as a function C (q) = q^3 -30 q^2 +500q+200.

What is the cost of manufacturing 10 units of commodity? (6marks)

	REALISTIC OBJECTIVES	POOR	EXCELLENT
1.	Identify the value for q	Not	Proper
		identifying	identification of
		the values	the value for q
		for q	
		0 mark	1 mark
2.	Substitute correctly the values of q	Not	Substitute correctly
		substituting	the values of q
		the correct	
		values of q	
		0 mark	2 marks
3.	Put the powers into consideration in the	The powers	The powers are put
	function	are not	into consideration
		properly put	in the cost function
		into	

GRADING RUBRICS

		consideration	
		in the cost	
		function	
		0 mark	2 marks
4.	Final answer for the task	Incorrect	Correct final
		final answer	answer to the task
		to the task	
		0 mark	1 mark

TOPIC: LIMITS OF A FUNCTION

LEARNING OUTCOMES:

At the end of this topic, you are expected to:

- 1. Define the limit of a function
- 2. Resolve related problems using the factorization.
- 3. Solve limit of a function using L'hopital's method.

Assessment Description (Task) (12 marks)

Prove that this function is defined using both factorization and L'hopital's method:

g (x)=x2-4x-2,

 $x \rightarrow 2$

GRADING RUBRICS

	REALISTIC OBJECTIVES	POOR	EXCELLENT
1.	Identify the value for x	Not	Identify the value
		properly	for x
		identifying	
		the value	
		for x	
		0 mark	3 marks
2.	State the formula for the L'hopital's method	Incorrectly	State the formula
	correctly	stating the	for the L'hopital's
		formula for	method correctly
		the	4 marks
		L'hopital's	
		method	
		0 mark	

3.	Substitute the values of the limit function	Incorrectly	Correctly
	correctly	substituting	substituting the
		the values	values of the limit
		of the limit	function
		function	4 marks
		0 mark	
4.	Final answer for the task	Not stating	Correct final
		the correct	answer for the task
		final	
		answer	
		0 mark	1 mark

TOPIC: DIFFERENTIATION

LEARNING OUTCOMES:

At end of this topic, you should be able to:

- 1. Use these rules in solving different differentiation problems:
 - a. Constant Function Rule
 - b. Linear Function Rule
 - c. Power Function Rule
 - d. Rules for Sums and Differences
 - e. Higher Order Derivatives
 - f. Product Rule
 - g. Quotient Rule
 - h. Chain Rule
- 2. Differentiate by using First Principles

Assessment Description (Task) (15 marks)

Let $c(x) = 1/8x^2 + 3x + 98$ be the total cost function for the commodity.

- Find the average cost and marginal average cost for the commodity.
- From what level of production is Marginal Average Cost (MAC) = 0
- From what level of production does Marginal Cost (MC) = Average Cost (AC)

GRADING RUBRICS

	REALISTIC OBJECTIVES	POOR	EXCELLENT
1.	Differentiate the function using applicable	Differentiate	Differentiate the
	rules of differentiation	the function	function using
		without using	applicable rules of
		applicable	differentiation
		rules of	
		differentiation	

		0 mark	2 marks
2.	Give the formula for the average cost	State the	States the right
		wrong	formula for the
		formula for	average cost
		the average	
		cost	
		0 mark	1 mark
3.	Solve for average cost	Does not	Solve for average
		solve for	cost
		average cost	3 marks
		0 mark	
4.	State the formula for marginal cost	Does not	States the
		state the	appropriate
		appropriate	formula for
		formula for	marginal cost
		marginal cost	
		0 mark	1 mark
5.	Solve for marginal cost by substituting	Does not	Solve for marginal
	appropriate values	solve for	cost by substituting
		marginal cost	appropriate values
		by	2 marks
		substituting	
		appropriate	
		vales	
		0 marks	
6.	Solve for marginal average cost to obtain the	Solve for any	Solve for marginal
	level of production	other	average cost to
		function than	obtain the level of
		marginal	production
		average cost	3 marks
		function	
		0 marks	

7.	Equate the values of marginal cost to average	Solution that	Equate the values
	cost to obtain the maximum production level	does not	of marginal cost to
	of the stated cost function	include	average cost to
		equating the	obtain the
		values of	maximum
		marginal cost	production level of
		to average	the stated cost
		cost to obtain	function
		the maximum	3 marks
		production	
		level of the	
		stated cost	
		function	
		0 mark	

TOPIC: INCREASING AND DECREASING FUNCTIONS

LEARNING OUTCOMES:

At the end of this topic, you should be able to:

- Interpret increasing and decreasing function
- Solve application problems relating to increasing and decreasing functions

Assessment Description (Task) (10 marks)

Given $Y = 4x^2 - 10x + 100$. Determine whether the function is increasing at x= 10 or x=5

	l Criteria	Poor	Excellent
1	Differentiating the function	Not	Differentiating the
	with respect to x	differentiating the	function
		function with	appropriately with
		respect to x	respect to x
		0 mark	4 marks
2	Substituting x=10 and x=5	Not properly	Properly
	into	substituting the	substituting the
		values of x into	values of x into the
		the differentiated	differentiated
		equation, thus	equation and
		arriving at the	solving the
		wrong solution to	equation to arrive
		the problem.	at a solution.
		0 mark	4 marks

GRADING RUBRIC

BSAD 112: BUSINESS MATHEMATICS II (AUTHENTIC ASSESSMENT)

3	Identifying if the function is	Not recognizing if	Appropriately
	increasing or decreasing at	the function is	Identifying if the
	the point where x=10 and	increasing or	function is
	x=5	decreasing where	increasing or
		x=10 and $x=5$	decreasing at the
		0 mark	point where x=10
			and x=5
			2 marks

TOPIC: EXTREME VALUES

LEARNING OUTCOMES:

At the end of this topic, you should be able to:

- 1. Determine extreme values
- 2. Solve application problems relating to extreme values

Assessment Description (Task) (15 marks)

The demand equation for Dangote spaghetti is given as $P=2x - 0.001x^2$. Find the value of x and the corresponding price that maximizes the revenue

GRADING RUBRIC

	Criteria	(Poor)	(Excellent)
1	Using the price	Not	Accurately
	equation to derive a	accurately	using the price
	revenue function	deriving the	equation to
		revenue	arrive at a
		function from	revenue
		the price	function
		equation	
		0 mark	4 marks
2	Properly differentiate	Inaccurate	Accurately
	the derived revenue	differentiation	differentiate
	function.	of the derived	the derived
		revenue	revenue
		function.	equation.
		0 mark	4 marks
3	Solve the	Not solving	Solving the
1	differentiated revenue	the	differentiated

	function when	differentiated	revenue
	equated to zero to get	revenue	function when
	х	function	equated to
		when equated	zero to get x
		to zero to get	
		Х	
			4 marks
		0 mark	
4	Using the value of x	Solving for a	Using the
	to arrive at the	different	value of x to
	maximum price and	value for the	arrive at the
	maximum revenue	maximum	maximum
		price and	price and
		maximum	maximum
		revenue apart	revenue
		from the	3 marks
		value in the	
		third step.	
		0 mark	

Total score: 15 marks

TRE FOR OPEN DISTANCE D eLEARNING

